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Finite-size rounding of a first-order phase transition is studied in "block"- and 
"cylinder"-shaped ferromagnetic scalar spin systems. Crossover in shape is 
investigated and the universal form of the rounded susceptibility peak is ob- 
tained. Scaling forms on the low-temperature side of the critical point are 
considered both above and below the borderline dimensionality, d>= 4. A 
method of phenomenological renormalization, applicable to both odd and even 
field derivatives, is suggested and used to estimate universal amplitudes for 
two-dimensional Ising models at T = T C . 
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1. I N T R O D U C T I O N  

In  this p a p e r  we s tudy var ious  finite-size effects arising at  the zero-f ield 
phase  b o u n d a r y  of a fe r romagne t ic  scalar  (or Ising-l ike) spin system, with 
an  emphas is  on the round ing  of the first o rder  t rans i t ion  for T < T c. 
Fini te-s ize  scal ing theory  (1'2) for behav io r  close to a cri t ical  po in t  has 
a t t r ac t ed  app rec i ab l e  theore t ica l  and  exper imenta l  effort  (see Ref. 3 for a 
recent  review). Transfer  mat r ix  ca lcula t ions  uti l izing finite-size scal ing ideas  
have  led to some r e m a r k a b l y  precise and  accura te  es t imates  for the cri t ical  
exponents  of several  ( d  = 2 ) -d imens iona l  models  (see the overview pre-  
sented by  Nightingale(4)).  More  recently,  a s tudy of finite size effects at  
f i rs t -order  phase  t ransi t ions  has been  ini t iated,  A scal ing theory was devel-  
oped,  (5) and  the proper t ies  of r enormal i za t ion  groups  close to the asso- 
c ia ted  "d i scon t inu i ty"  f ixed poin ts  (6~ were invoked.  I t  was found  (5'7-9~ that  
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the rounding of a first-order transition as a function of the ordering field, 
say, H, takes place on a scale proportional to the inverse of the total 
volume, V, of the system. However, if the system is already infinite in one 
direction, so forming a cylinder of cross-sectional area A, the rounding in 
field is known to be exponentially narrow in A; this property has been 
derived analytically (9-~1) for the field-driven transitions in Ising model 
cylinders and numerically (9:2) for temperature-driven first-order transitions 
in several (d = 2)-dimensional Potts models with q > 4 states per site. One 
of the motivations for our present work is to understand the crossover in 
the sharpness of a first-order transition that must evidently take place when 
the shape of a system goes over from a totally finite "block" geometry to an 
elongated, cylindrical geometry with, ultimately, one infinite dimension. In 
addition we hoped to obtain more explicit forms for the scaling functions 
describing the characteristic rounding behavior. 

In Section 2 we combine an introductory discussion with a derivation 
of the rounding form for the "block" situation and we present a scaling 
formulation which allows a crossover to cylindrical geometry. In Section 3 
we call on the transfer matrix approach to obtain an explicit form for the 
rounding which interpolates between the block 5.nd cylinder geometries. 
We compare our results with an approximate scaling analysis for low 
temperatures presented recently by Cardy and Nightingale (13) (see also 
Appendix B). 

Section 4 addresses various further questions including the nature of 
the "corrections-to-scaling" for different types of boundary condition. We 
also exhibit the rounding behavior in the solvable infinite-range model 
which displays mean field critical behavior. Cylindrical geometry is taken 
up again and two regimes of the exponential rounding are identified: one 
close to the d- -  1, T ~-0, limiting phase transition, and the other arising 
when the d-dimensional phase transition is approached at fixed tempera- 
ture in the range 0 < T < T c. The interplay between the two forms of 
behavior is related to the detailed nature of the asymptotic degeneracy of 
the two largest eigenvalues of the transfer matrix. For the standard square 
lattice Ising model, we report (in Appendix A) some exact results, based on 
Onsager's solution. (14,15) 

Recently Br6zin (~6) has argued on the basis of exact calculations in the 
infinite-component, n ---) oe limit, that the usual finite-size scaling theory for 
the critical region (1'2) is valid only for d less than the borderline dimension- 
ality d> = 4. In Section 5 we consider the approach to criticality and derive 
the large argument asymptotics of the scaling functions for both block and 
cylinder geometries. We present a generalization of the finite-size scaling 
hypothesis which is applicable for d > d> and which agrees with Br6zin's 
explicit results: a "dangerous irrelevant variable" plays a central role. 
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Finally, in Section 6, we argue that the so-called "single-phase func- 
tions" introduced by Schulman and Privman ~l~'j~) satisfy a finite-size 
scaling postulate near criticality. This property allows phenomenological 
renormalization calculations ~4) to be performed for both even and odd field 
derivatives of the free energy below and at T C. We illustrate the application 
of the method and report numerical estimates for the first few critical 
exponents and universal critical amplitudes for the square and the triangu- 
lar lattice Ising models. Some open problems are mentioned briefly in 
Section 7. 

2. SCALING FORMS FOR FIRST-ORDER TRANSIT IONS 

For definiteness we consider d-dimensional hypercubic lattices with 
lattice spacing a and cell volume a a. A rectangular or block lattice geome- 
try will be specified by sides of lengths L 1, L 2, . . .  L d parallel to the lattice 
axes. Frequently, we will consider the simple, finite geometry 

L 1 = Lll-~ L, L 2 = L 3 . . . .  L d = L•  (2.1) 

which represents a rod if LII > L•  as we will usually consider, or a slab if 
LII < L•  The total volume is 

d 

v = 1-I (2.2) 
i = 1  

and the cross-sectional areas are 

d 

= = = La~ - '  (2.3) Aj V / L j  I I  Li with A --~ A~ 
i~ j  

Unless explicitly stated otherwise, periodic boundary conditions will be 
assumed in each direction. An infinite cyfinder geometry is specified by 

L t = LII ~ L--~ ~ .  
At each site i, with position vector ri, we suppose a scalar spin 

variable, si, is located which interacts with an external magnetic field 

H = hk 8 T (2.4) 

and, via couplings of finite range, with spins on other sites, j .  Various 
explicit calculations will be discussed and presented for the nearest neigh- 
bor spin-1/2 ferromagnetic Ising model with Hamiltonian 

= - J ~  s d j -  Had~s~  (s~ = + 1) (2.5) 
(/j~ i 

the unorthodox factor a d is introduced here for dimensional reasons that 
will become more evident below. For simplicity we will use the language of 
this model even when our considerations can be readily generalized. 
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The scaling ansatz for first-order transitions advanced by Fisher and 
Berker (FB) (5) can be written for the singular part of the reduced free 
energy density of a simple ferromagnet below criticality, T < T c, in the 
form 

f,(H, T; Lj) =-- F, /ksTV~ Ao(T)LodW[B(T)HLd; lj] (2.6) 

where the shape ratios/j = Lj/L o are assumed fixed and of order unity: a 
convenient normalization is provided by 

d 

I-I/j-- 1 so that L0 d= V (2.7) 
j = l  

Technically the temperature is an irrelevant variable when T < Tc and the 
coefficients Ao(T ) and B(T) then represent nonuniversal amplitudes. The 
scaling function, W(y; lj), must, when conveniently normalized, satisfy 

W(y;lj)~-ly [, as y-)moo (2.8) 

in order to reproduce the first-order transition in the infinite-size limit, 
L 0-~ oo. Indeed, the magnetization density in that limit becomes 

m=----V ~-H r'~+ksTA~ +mo(T ) (2.9) 

for small H ~ 0, where mo(T) is the bulk spontaneous magnetization which 
vanishes near criticality as 

mo(T)~lt[ ~ with t = ( T -  T~)/Tr (2.10) 

The zero-field susceptibility in the finite system is then given by 

Xo(V, Lo)=( Om , ,=0= -k~ rA B2'~l""'rd= ,0Wl~.o  -- (2.11) 

where Wg'(lj)= (d2W/dy2)y=O. Now, as discussed in FB, the zero-field 
susceptibility for large L 0 can be expressed in terms of the correlation 
functions, (sisj>, for large spin separations. Specifically, the fluctuation 
relation yields 

X0 = (a2d/ VkBT) E E (s, sj> (2.12) 
i j 

The zero-field correlation functions, (sisj>, depend here, of course, on the 
size and shape of the system but for T <  T~ we may argue that the 
predominant configurations of the system correspond to the spins being 
spontaneously magnetized "up" or spontaneously magnetized "down." This 
encapsulates the usual argument (s'17-19) leading to the identification of the 
(short) long-range order as 

lim lim (s~5>= m~(T) ,(2.13) 
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and to the conclusion that when L 0 ~ oo the sum in (2.12) may be correctly 
estimated by the corresponding replacement <sisj)~m2. (17 19) If, at least 
provisionally, we accept this heuristic argument we find, for L 0--> oo, 

X o ~ ( m o V ) 2 / k ~ T V  or C ( T ; / j ) - -  mZ/kBT (2.14) 

which, although nonrigorous, would seem to be rather generally valid. 
Combining (2.9), (2.11), and (2.14) yields the identifications 

A o = - W~'(ly), B ( T )  = mo(T)/kBTA o (2.15) 

from which we conclude that A 0 is independent of T and that W~'(/y) is 
actually independent of the shape ratios, /y (see also below). More impor- 
tantly, we see from (2.6) that the finite size of the system at the first-order 
transition enters the FB scaling ansatz only through the natural combina- 
tion 

Yv = E v ( T ) / k 8  T =  m o ( T ) H V / k B T  (2.16) 

which represents the dimensionless ratio of the total bulk ordering energy 
of the transition to the thermal energy! This constitutes a most appealing 
and, as we will see, rather general way of restating the main scaling 
conclusion of FB. 

If one takes to heart, more seriously still, the predominance of the two 
spontaneously magnetized configurations, the partition function for the 
system near the transition should be approximated well by 

Z ( H ;  T, L j )~e  +m~ + e -m~ (2.17) 
This leads immediately to the explicit results 

f , ( H , T ; L y ) ~  - V - l l n ( 2 c o s h [ m o ( T ) H V / k B T ] }  (2.18) 
ms(H, T; Lj) ~ m0(T)tanh [ mo( T ) H V /  k s T  ] (2.19) 

which, clearly, are in the expected scaling forms, the scaling function in 
(2.6) being W(yv) = - ln (2  cosh Yv) while A 0 = 1. 

The simple scaling picture thus obtained is intuitive and, seemingly, 
quite satisfactory. It cannot, however, be regarded as complete: in particu- 
lar, it indicates that the rounding of the transition is always on the scale 

H v ~ k B r~ mo( T ) V (2.20) 

which is shape-independent, whereas we know (9 11) that in the case of a long 
block or rod with Lll >> L•  which approaches a cylinder if Lir--~ oo, the 
rounding should become exponentially small in L•  Likewise, X0 always 
diverges linearly with V = HjLj according to (2.11) [or (2.19)], whereas for 
a cylinder X0 diverges exponentially rapidly with L•  We aim to under- 
stand this deficiency of the simple scaling analysis and to repair it so that 
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the crossover between block and cylinder geometry can be described more 
satisfactorily. 

One unstated assumption leading to (2.16)-(2.20) is immediately obvi- 
ous, namely, here (as in FB) it has been implicitly assumed that the 
dimensions satisfy 

Lj>>~(T)  (all j )  (2.21) 

where 400 represents the bulk ( Lj ~ oo) single-phase correlation length mea- 
sured by the decay, or by the second spatial moment of the net correlation 
function 

G(r, - rj) = (sisj) - (sg)(sj) 

This condition is needed in order that the long-distance behavior of the 
correlation functions, (sisj), dominates in (2.12). However, it should cause 
no problems except near the critical point where 400 diverges as Itl 

More serious is the fact that in asserting the predominance of the 
states of "up" or "down" with total magnetization +_ Vmo(T), we have 
overlooked all configurations in which some regions of the system are 
magnetized "up" while others are magnetized "down," as illustrated in Fig. 
1. Such configurations are, of course, suppressed by a Boltzmann factor 
representing the excess free energy associated with the interface (or domain 
wall) between the oppositely magnetized regions: Including them does, 
however, increase the entropy. For block geometry, configurations of this 
sort may thus yield corrections which, relative to the bulk, will be of order 
A / V ~  1/L o. This already suggests corrections to (2.18) [or (2.6)] of order 
1 / V  1/d which remain undisplayed. (See, however, Sections 3 and 4 below.) 

LII ~ . LII--~ 
(b) 

L• I -- + - + 

(C) LII >> ~II (L~'T) 

Fig. 1. Some typical configurations of a system of finite size exhibiting nonuniform ordering 
(or magnetization) forming "up" (or +) and "down" (or - )  domains in a block geometry, (a) 
and (b), and in a cylinder geometry, (c), where Lil-~ oo. 
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In the case of a cylinder geometry the effects are more serious. As 
illustrated in Fig. lc, whenever LII >> L• we expect the dominant configura- 
tions to involve domain walls of area A = Lax - 1 which reach across the 
system so resulting in fluctuations which break the system into successive 
regions of "up" and "down" magnetization of a characteristic length which 
we will call ~II(T; L• This length may be expressed in terms of the ratio of 
the two largest eigenvalues of the transfer matrix below T c (see Section 3); 
but, more generally, it is related to the interracial tension (or domain wall 
free energy) ~(T)  via (15) 

ill ( T; L z ) ~ e x p  [A Z( T ) / k  B T 1 (2.22) 

so diverging exponentially fast as L• ~ m. (There is a more slowly varying 
prefactor present here which will be discussed in Sections 4 and 5.) 

These observations suggest that for a cylinder (with LII = m) scaling 
should involve the ratio 

YA = E A ( T ) / k s T =  mo(T)HA~II(T;A)/kBT (2.23) 

which would replace (2.16). Thus we might expect the scaling relation 

ms(H,T;LII = ~,L•177 ] (2.24) 

to hold for a cylinder. This then predicts rounding on the scale 

H A = kl~T/mo(T)~ll(T;L• -1) (2.25) 

where the reduced interfacial tension is 

0(T) = Y.(T) /k  B T (2.26) 

Thus we obtain the anticipated exponentially small rounding and an 
exponential divergence of Xo(Lj_). The surmise (2.24) will be justified 
analytically in Section 3 and an explicit form for the scaling function 
Y~(y) will be obtained. 

The presence of a diverging correlation length, ~lt, suggests that when 
Lji is finite it should enter specifically through the combination x = LII/~LI 
which is actually the same as the scaling ratio YV/YA" Thus we may extend 
(2.6) [or (2.19) and (2.24)] to obtain the combined scaling forms for the 
magnetization 

m( H, T; Lj) ~ mo( r )  Y(yv ,  YA) 

mo(T)YoI'mohV; LII/~II(L• ] (2.27) 

which should describe both block and cylinder geometries and the cross- 
over between them. Thus when tll/~ll becomes large we should have 
Y(Yv ---> ~ ,  YA) --> Y~(YA) so that (2.24) applies and the rounding is expo- 
nentially small. Conversely, if the shape ratios /j remain fixed as LIF,L • 
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-~ oo we have LII/~II ---> 0 and expect 

Yo(Yv; x ~ 0) ~ tanh Yv (2.28) 

so reproducing (2.19) and yielding rounding of order 1/V. 
Some caution is necessary, however, since if LIi becomes significantly 

smaller than L• one goes over to a slab geometry (or, for d -- 2, simply to a 
rod oriented along the second axis). Since a slab of finite thickness Ltt may 
exhibit a transition in the limit L• oc a different crossover must arise: 
even in the absence of a transition, however, we should expect a dif- 
ferent scaling combination, say, L . /~ (T ;  LII,L• to enter in a nontrivial 
way. In the limit L .  ~ oo there will be finite-size corrections of order 
exp(-Lii/~oo ) (or some power thereof) and, in the case of a first-order 
transition, interface corrections of order exp[ -LI tS~ , (T) /ksT  ] where S 
is some characteristic ( d -  2)-dimensional perimeter of a heterophase fluc- 
tuation. For d = 2 we clearly have, by symmetry, corrections of the form 
exp( -LI IZ/kBT)  [which, via the hyperscaling relation Y.~l/~oo, are also 
of the form exp( -  L I I /~ ) ,  at least, in the critical region!] and evidently ~ 
exp(LiiZ/k B T). Thus it is plausible generally that the new length g diverges 
exponentially fast with LII. If so it would suggest that the crossover to slab 
behavior occurs when LII is of order lnL•  we will find that the same 
criterion arises in the transfer matrix analysis presented in the next section. 

In summary, scaling at a first-order transition in a block geometry 
should be controlled by the "bulk" combination, Yv = moHV/ksT;  but if 
Lll becomes much larger than L x ,  the further, "cross-sectional area" 
combination, YA = moHA(ll/ke T enters, with ~II(L• diverging in accord 
with (2.22); in the cylinder limit, LI/= ~ ,  only YA determines the rounding 
of the first-order transition. We now test these conclusions in various ways: 
we will find that they even extend into the critical region. 

3. T R A N S F E R  MATRIX ANALYSIS 

The transfer matrix method for Ising spin systems is well known (2~ 
but it is not always recalled that it is of considerable generality, applying to 
continuous variables and extending to continuum systems.(21'22) If A, 
= A , ( H , T ; L I )  with r = 0 , 1 , 2  . . . . .  R(L• are the eigenvalues of the 
transfer matrix for a system of cross-sectional dimensions L a ,  arranged in 
order of decreasing magnitude, the reduced free energy density is given by 

f ( H , T ; L I I , L I )  = - V- l ln  2 AL/a (3.1) 
kr=0 

with LII =-- L. The upper limit R(L• in general diverges as exp(cA/a a- 1), 
where c is a constant and A -- L a-I,  In the cylinder limit, L L --) oO, the first 
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fr f -~tnAr 

mu ttiportlcte [+l 
bands ] ~ - ~  8f  ~ I /L .A 

- -  - -  H 

kBT keT kBT V ~ ~ A-~| h-~ 

Fig. 2. Depiction of the transfer matrix spectrum for a system of cross-sectional area 
A = L ~ - i  as a function of field, H, through a first-order transition in terms of the "free- 
energy levels" fr = - ( l n  A,)/Aa. Details of the spectrum above f2 are incomplete. 

term in the sum gives the complete result. For T < T C and H not too large 
we will see, further, that the f irst  two terms give a satisfactory representa- 
tion 2 for a rather wide range of LLI. To show this consider the behavior of 
the "free energy levels" 

f , (  H,  T; r • ) = - ( A a ) -  'ln Ar( H , T; L • ) (3.2) 

Our knowledge of the structure of the low-lying levels as a function of 
h = H / k  B T is summarized schematically in Fig. 2. This figure synthesizes 
what is known rigorously in zero field for the two-dimensional Ising 
model,(14) what can be concluded by general analyses, (21'22'26) what can be 
surmised by studying behavior at large fields, H, and in general field for 

2 A  similar conclusion regarding the adequacy of only the first two eigenvalues has been 
reached independently in a somewhat different context by Kleban and Akinci, (23) who have 
studied the shape dependence of the specific heat of a two-dimensional Ising model on an 
m x n torus in the critical region in the scaling limit, m, n ~ m with m/n fixed as analyzed 
originally by Ferdinand and Fisher. (24) Two-eigenvalue dominance in yet another context 
has been found by Bruce. (25) 
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T = 0, what can be checked in certain simple models, (2v) and what can 
reasonably be conjectured about the nature of the asymptotic degeneracy 
of A o and A 1 and tested numerically. (~~ i) The first point is that the lowest 
level, fo, determines the bulk free energy and hence, for h of order unity but 
small, has a slope T mo(T ). The next crucial feature concerns the asymp- 
totic degeneracy in zero field which fixes the gap 

Af(H = 0, T; L l )  = fl - fo = 1/Atll(T; L•  (3.3) 

in terms of the longitudinal (zero-field) correlation length, 

t lk (T;L•177 as L •  (3.4) 

and of the interracial tension Z(T)--kBTa(T).(15)  Note we include the 
amplitude factor which is slowly varying in the sense that 

A-11nD(T;L• as L•  ---~ ~ (3.5) 

In Appendix A we outline an explicit evaluation of D(T;L• for the 
two-dimensional Ising model and find, as might have been guessed, that it 
varies as a power of L j_ (see further below). 

The third point is that the gap, Af=f l  - fo ,  for h = O(1) small, is 
equal to l/Atoo(T) where, as in Section 2, t~  denotes the bulk single-phase 
correlation length. Above the gap lies a quasicontinuum of "single-particle" 
levels (21'22'z6) with a spacing 6f of magnitude 1/AL_L forming a band 
containing of order A / a  d- 1 levels. In a zeroth-order approximation (which 
is exact at T = 0) the lowest levels cross linearly in zero field and again at a 
field H x which, it now follows, must be given by 

2moHx/kt~T = 1/Atoo (3.6) 

Furthermore, it appears (1~ that the "avoided crossings" that appear for 
T > 0 are, to leading order in L •  still located at H x. From this we can 
conclude that under the condition 

T < T  c and IHl<<Hx~kaT/motooLa• - '  (3.7) 

the two lowest free energy levels are separated from the higher levels by a 
gap of order l/Atoo. This in turn means that under the same conditions we 
have 

a 2 / a  1 < e x p ( -  a/too) (3.8) 

and hence can write the total free energy density as 

f =  - V - q n [ A o  L/a + A~/a] + o~(LIi) (3.9) 

where d)(Lii) denotes terms exponentially small as LII---~ oo. To be more 
explicit, note that the sum ~.,~=2(Ar/Ao) L/a is, by (3.8), certainly bounded 
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by R e x p ( - L / ~ ) ~  exp(cA/a d - l -  L / ~ )  and so is exponentially small 
when L ~  Lil>> L~-I~oo(T)/a d-l. More realistically, however, only the 
first, single-particle band of order ( L •  d-I levels need be counted to 
estimate the leading correction so that the error term in (3.9) is negligible 
when 

>> ( a  - (3.10) 

which is a much milder condition! (Compare with the penultimate para- 
graph in Section 2.) 

Now one can argue, and substantiate by various detailed 
checks, (1~ that the "avoided crossing" of the two largest eigenvalues as 
a function of the field, h, or, better, of the two lowest free energy levels, 
fo(H) and f l(H), may, for large L l / a ,  be described correctly by the roots 
of a quadratic equation that represents the characteristic determinant of a 
real symmetric 2 • 2 matrix whose diagonal matrix elements are smoothly 
crossing, symmetrically related functions, f+ (H)  and f _  (H)  = f+ ( -  H),  
while the off-diagonal elements serve to produce the splitting A f(0) given by 
(3.3). The "single-phase free energies" thus introduced are then given by 

f+_ (H, T; L•  = �89 + fl) ~ �89 {(fl  - fo)2/h2 - [ ~ f ( 0 ) / h ]  2 } 1/2 (3.11) 

Further, one can show, (1~ as is to be anticipated, that as Lj_/a ~ ~ one 
has 

f+_ ,~f~(O, T) -T- mo(T)h - �89 2 u O(h 3) (3.12) 

where f~(O, T ) = f ( H  = 0, T; L j ~  ~ )  is the bulk zero-field free energy, 
m0(T ) is, as before, the bulk spontaneous magnetization and, similarly, 
Xoo(T) is the initial susceptibility of the infinite system. The residual errors 
in (3.12) arise from the finite transverse dimensions of the layers: for 
periodic boundary conditions, we thus anticxpa ,, that they are of order 
e x p ( - L •  provided only that the avoided crossings between f l (H)  
and f2(H) at H"~ H x are not reached: this is ensured if (3.7) is respected. 
Conversely, then, for the two lowest free energy levels we expect the 
representation 

fo, fl ~ f~o(T)  - �89 2 -T- [m2h 2 + 1/4A2~l~(L• t/2 (3.13) 

to be accurate to order h 3 and e x p ( - L •  as regards fo( H, T; L j_) 
although similar accuracy for f l(H, T; L• should apply only up to [HI 

H x [given by (3.6)]. This expression is clearly useful in that all the rapid 
dependence on H has been isolated explicitly in terms of ~ll(T; L• 

If we accept (3.13) and, in order to obtain the leading crossover 
behavior in h, neglect the x~h 2 term, we obtain from (3.2) and (3.9) the 



396 Privman and Fisher 

final result 

fs -- f (H,  T; LII, L l )  - foo(T) 

- V - l l n 2 c o s h (  V[m2(T)h 2 + 1/4A2(I~(T,L• '/a } (3.14) 

this should be valid for T < T~ up to corrections in LII and L j_ which are 
exponentially small provided that (3.10) is met and that the further condi- 
tion 

Lj_/~o~(T ) >> 1 (3.15) 

is satisfied. Note that on combining this with (3.10) the shape ratio L J L •  
is required to be bounded below only by ~ l n ( L z / a ) / L  l which becomes 
arbitrarily small for large L a ;  i.e., flat slabs are allowed! For finite L•  
accuracy can be improved, if desired, by replacing f ~  in (3.14) by 
�89177 f_(L• and mo(T ) by [ f _ ( L • 1 7 7  ('~ For 
systems with anisotropic interactions (3.15) must, naturally, be replaced by 
Lj/~)>> 1 where (~) is the correlation length in the directionj. 

To bring out the main features of the conclusion (3.14) consider, first, 
the limit of large H/ksT :  the result then reduces simply to 

f ,(H, T; Lj) ~ - V-11n2 - molh I (3.16) 

which reproduces correctly the appearance of the bulk first-order transi- 
tion. Next consider the block limit 

x = LJ~tI(L• (3.17) 

where we have invoked (3.4) and (3.5). Evidently one now recaptures 
precisely the naive "two-peak" result (2.18), which scales solely in terms of 
the bulk ratio Yv = moHV/kB T with, therefore, rounding on the scale 
H v [see (2.20)1. Note that the ratio of H v to H x is given by 2~o/Lii << 
1/(d - 1)ln(L l / a), where (3.10) has been recalled: thus the condition (3.7) 
is amply met in the region of interest. 

On departure from the block limit a cursory inspection of (3.14) 
suggests that sharp structure in the magnetization as a function of H might 
set in on the scale H A = kBT/moA(H<< H v [see (2.25)]. In fact, however, 
this is not the case since when x --- Lll/(Li is small and [H I ~ H A the whole 
argument of the cosh in (3.14) is then likewise small and one may expand 
to obtain 

V f s ~ _ l n 2 _ ~ x Z _ l  2 _ . .  ) 
+ ~ y a ( 1 - � 8 9  y 6) (3.18) 

Consequently the deviations in magnetization, susceptibility, etc. enter 
merely as multiplicative factors which depart f rom unity as x 2. 
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More generally, we see that (3.14) has exactly the two-variable cross- 
over scaling form anticipated in (2.27): explicitly we can rewrite (3.14) as 

T; Lj) - V-'ln[2 cosh(y  + �88 '/2] (3.19) 

so that the crossover scaling function for the magnetization in (2.27) is 

Yo(y; x)= y tanh[(y2 +  x2)'J2] (3.20) 

which satisfies the limit relation (2.28). A similar result, with mo(T ) re- 
placed by 1 in the limit ToO can be derived using the low-temperature 
approximate renormalization-cum-rescaling approach of Bl6te, Nightingale 
and Cardy (9'13) but the form of the slowly varying prefactor, D(T,L• in 
the expression (3.4) for ~dl is not reproduced correctly: see the next section 
and Appendix B for details. 

Lastly, notice that in the cylinder limit x = LII/~II--~ oo one obtains 
simply 

f , (H,T;Lj )~  -[m~(r)h2 + 1/4A2~I~(T;L• '/2 (3.21) 

so that the scaling function for the magnetization in (2.24) becomes 

Y~(YA) = 2yA/(1 + @2) ̀ /2 (3.22) 

and rounding is now only on the scale H A << H v << H x. The zero-field 
susceptibility hence diverges as 

x0(T; L• ~ 2m~ 2m~ k ~  La- '~IJ(T' L• ~ ~ T  LaS 'aD (L• A~/k"r (3.23) 

where the full coefficient has now been identified. 
In summary, the transfer matrix calculations bear out all the general 

scaling features anticipated in Section 2 and, furthermore, provide the 
explicit scaling functions and amplitudes describing the cylinder limit and 
the crossover from the block limit. 

4. SOME FURTHER ASPECTS 

The considerations of Section 2 leading to the scaling form (2.27) are, 
of course, not much more than heuristic; similarly, although we believe the 
transfer matrix analysis of Section 3 leading to the explicit result (3.14) is 
rather convincing, it is certainly not rigorous. The main points open to 
question will, we trust, have been evident to the reader. In this section we 
comment further on a few more detailed issues. 
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First, recall the restriction to periodic boundary conditions in all finite 
directions. Under these conditions no matrix elements are needed in (3.1) 
and one may assert (1 3) that corrections to the leading scaling results are of 
order e x p ( - L j / ~ ) ) .  This conclusion should hold equally for antiperiodic 
or helical boundary conditions in one or more of the transverse directions 
since these, also, respect the symmetry Hr H and so do not shift the 
location of the susceptibility peak. For free or open boundary conditions, 
however, changes in the free energy of relative magnitude alL•  and a/LkL 
occur and, if there are also surface magnetic fields the position of the 
susceptibility peak may shift (5) to a field Ho(Lj) of order (aAi/V)~(a/Li)  
which, asymptotically, is much larger than the rounding field Hv~ad /V .  
One may reasonably conjecture that the same forms of rounding and 
scaling will be valid with H simply replaced by the shifted field (1) / t  
= H -  Ho(Lj) but we have not investigated the more detailed arguments 
required to substantiate this. (Such shifts have been studied in the critical 
region by scaling hypotheses (28) and local mean-field theory. (29)) 

When the finite-width corrections are exponentially small one may, as 
remarked, improve the accuracy of (3.14) by using the terms in (3.12) of 
higher order in the field. Thus, for the susceptibility the leading correction 
to the scaling peak in the block limit is given, for ]HI~< H x, by 

Vm2( T ) 
x (H,T;L j )~  kBTcosh2(Vmoh) + Xo~(r) + O(H) (4.1) 

This formula might be useful in analyzing well-equilibrated Monte Carlo 
data on a finite system in small fields below T C. 

It is instructive, in passing, to examine the rounding of the first-order 
transition in the infinite range or Husimi-Temperley model which yields 
mean-field theory in the thermodynamic limit. The Hamiltonian for N 
spins may be written 

1 J s (4.2)  
~ =  2 N  i = 1  

The thermodynamics of the model (and references to the literature) are 
given by Thompson. (2~ Via a Kac-Hubbard transformation one sees that 
the partition function is proportional to 

ffooeXp[Ng(i,;K,'7,)]a , (4.3) 

with K = J/kBT, h = H / k , T ,  and 

g(/z) = - �89 2 + lncosh(K/z +/7) (4.4) 

For T < T c (given by Kr = 1) and H /> 0 + the magnetization, m(H, T), is 
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the positive root of 

m = tanh(Km +/~) (4.5) 

while for H < 0 - the negative root is to be chosen. For large N one easily 
sees that the transition is rounded on the scale HN~I/N which corre- 
sponds to the previous block limit since N fills the role of V even though 
the model has no proper spatial geometry. Indeed, for small/~ one finds the 
singular behavior of the free energy per spin is 

[ f(ff, T ) -  f~(O,T)]s= -N-'ln[2cosh(ms (4.6) 

with f~(H, T) = g[m(H, T); H, T]; this is precisely analogous to the previ- 
ous "two-peak" scaling results, (2.18) and (3.14), in the block limit. The 
corrections to this leading behavior follow by using the method of steepest 
descents to evaluate (4.3) and are thus of relative order 1/N, 1/N 2, etc. By 
way of example one finds that the initial susceptibility is 

Xo(T,N) = m2o(T)U/kBT + x ~ [ l  - 2K + 2J(1 - K)X~] + O(U-') 

(4.7) 

where the limiting bulk susceptibility is X~ = (kB Tcosh2Km - J)-~. 
Although the two-peak result is confirmed by the infinite range model 

and, more pertinently, by the transfer matrix analysis, it cannot be regard- 
ed as beyond question except, perhaps, in the low-temperature region, 
exp(-2dJ/keT ) << 1, where only few excitations are present. Indeed, the 
question of the probability distribution of the magnetization (especially in 
Heisenberg spin systems) is a matter of some subtlety. (25'27'3~ 

In the cylinder limit LJ~II>> l, the rounding is on the scale H A 
"~kBT/moA~ll so that the behavior of ~II(T;L• is of interest. In the 
low-temperature limit one easily shows that the prefactor in (3.4) behaves 
for all d as 

D(T;L_)--*�89 for T ~ 0 ,  L• fixed (4.8) 

Since mo(T ) and Z(T) also approach constants when T---~0 the rounding 
thus varies as 

HA(T; L• oc Texp(- ZoA / keT)/A (4.9) 

when T ~  0 at fixed A = L~-J.  This result is implicit also in Refs. 10 and 
11; however, the arguments of B16te, Nightingale, and Cardy (9'~3) yield 
rounding on the scale Texp( -Y0A/kB T)/Laa which is smaller than (4.9) 
by a factor 1/Lz. The reason for this discrepancy is explained in Appen- 
dix B: qualitatively, the inadequacy of their argument is the use of 
renormalization group flows linearized around the discontinuity fixed point 
at T, H = 0, L• = oo, to renormalize down to finite L•  
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The low-temperature limiting form (4.9) is valid only while the total 
probability, A e x p [ - 2 ( d - 1 ) J / k e T ] ,  of a layer excitation is small: see 
region (i) of Fig. 3. In the opposite limit, namely, L• --> oo at fixed T > 0 
(with T < T~), (4.8) fails. The analysis of Appendix A shows, for the 
two-dimensional Ising model, that one may then write 

( A ~ ( T )  ~ exp[ L~_-lo(T)] (4.10) 

where P(T)  is a slowly varying function with a finite limit at T = T ~ -  , 
while ~0(d = 2) = �89 It is reasonable to conjecture that this expression with 
an appropriate exponent w(d) or, possibly, different functional form, holds 
generally for L l ~ oo at T fixed for d < d> = 4 (see Section 5 for d > d>): 
see region (ii) in Fig. 3 which is bounded, following (3.15), also by 
L •  The rounding is then smaller than (4.9) by a factor 1/A ~ and 
is also "enhanced" by a factor ~o~ (d- t ) - I  which diverges as T ~  T c - if 
~0(d- 1 )>  1. Note, further, that if one invokes the hyperscaling rela- 
tion, (33-35) /z ----- ( d  - 1)t,, for the surface tension exponent defined via 

o ( T ) = 2 ( T ) / k B T , ~ B ~ [ ( T  ~ -  T)/.T~]", for T ~ T ~ -  (4.11) 

Q 

L .  

0 0'" """ "'~(x,~ 
,,, e-Z J/kBT T 

z-Tf) l 

(t) : ',,(Ltt)i 
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." 
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Fig. 3. Sketch of the region, (i) with (ii), of validity of asymptotic scaling at the first- 
order transition in the cylinder limit LII >>fl I for cross-section area A = LdS 1. The arrows 
indicate the order of limits appropriate in the two distinct regimes (i) and (ii). The domain of 
critical behavior of (I/(T, L•  is marked (iii). 
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the ratio ( i r / ~  becomes, near criticality, a function only of the combina- 
tion L j _ / ~ .  This accords with the natural scaling hypothesis for the 
critical region advanced in the following section. Hyperscaling is valid only 
for d-<< 4, although (3.4) should hold above d = 4: the modifications of 
naive finite-size scaling needed when hyperscaling fails are also discussed in 
the next section. 

5. F IRST-ORDER SCALING NEAR CRIT ICALITY 

We consider now how the finite-size scaling description of a first-order 
transition in the block and cylinder limits goes over, as it should, into 
standard finite-size scaling theory ~1 3.[6) for critical points when T ~  T c - .  
We also address the situation above d = 4 dimensions where naive finite- 
size scaling and hyperscaling breakdown ~16) because, as we will demon- 
strate, a dangerous irrelevant variable (36) must be taken into account. 

The finite-size scaling hypothesis for the critical region asserts that all 
unbounded lengths, say, L, should be scaled by the correlation length 
~ ( T )  which diverges as It[ -~ with t = ( T -  T~)/T~. With the notation of 
Section 2, namely, V = L0 d and/ j  = L J L  o, we may thus write the hypothe- 
sis 

fc( H, T; Lj) ~ Itl2-~ h /It?,Loltl  ; ) (5.1) 

with 2x =/3  + 2/. Note that, as usual, analytic background terms have been 
subtracted f romf(H,  T; Lj) to definefc: for simplicity we have also dropped 
the metrical or amplitude factors A, B, etc. which permit one to normalize 
the scaling function, Wc(y,z; lj) [compare with (2.6)]. 

Now, if the neglect of irrelevant variables is permissible, (5.1) should 
be valid in the full domain H, t, L o l ~  0. But this critical scaling domain 
overlaps the region of validity of the first-order scaling results (2.27), (3.14) 
and (3.19) for f~ = f - f ~ ( H  = O, T). We recall that the first-order scaling 
involved the two combinations 

Yv = mohV~ ghZJltl B, as Z-~ L - (5.2) 

where (2.7), (2.10) and (2.16) have been used, and 

LI J Liiit], (a-1)~, exp (5.3) 
x -  ~ll(L• ) ~ P c  A ~ ll 

where Pc is a constant and we have used (2.1) and (4.10). At first sight these 
scaling variables are not in the scaling form (5.1): however, if hyperscaling 
holds,(32 35) so that dv = A + /3 and /x = ( d -  l)v, it is easy to check the 
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relation 

y v ~ B y z  a with y = h/ I t l  ~ and z = Lolt[ ~ (5.4) 

as T ~  T c - and, likewise, using (4.11), 

x ~ X ( z ; I , )  =pcl?+'~176 (5.5) 

where we recall that ~0 = �89 for d = 2 (by Appendix A) but is not determined 
for d > 2. (One might, indeed, have z (d- 1),~ replaced by a different, but still 
slowly varying function of z for d = 3.) 

Having checked that, indeed, the first-order scaling forms for T < T~ 
do respect critical scaling when d < d> = 4 we can use (3.19) to conclude 
that the critical scaling function, W~ (y, z;/j), behaves in accord with 

W c ( y , z ; l j ) -  Wc(0 , z ; / j )~  - ln2cosh[  B ~ b  2d + �88 '/2 (5.6) 

as z---) r (with T < T~); this expression encompasses both the block and 
cylinder limits and also the crossover between them i.e., the full range 
Lll =-- L 1 >~ Lj f o r j  = 2,3 . . . . .  It is remarkable that such an explicit result 
can be found for the finite-size scaling function in the critical region[ 

An interesting point raised by Br6zin (16) for the cylinder limit is 
relevant to phenomenological renormalization group calculations(4); this 
concerns the finite-size scaling properties of the spectral gap A f(0, T; L•  
or, equivalently, of ~ll(T; L•  in the critical region and, in particular, at the 
critical point. By the general finite-size scaling hypothesis one anticipates 

~II(H, T; L • ~ It[-"Zll( h /ltla, L • ~) (5.7) 

where we have included a dependence on the field but, for simplicity, 
supposed L 2 . . . . .  L d = L• (while Lii--~ oo). A check on this scaling 
ansatz is also provided by (4.10) which, if hyperscaling holds, yields 

Zil(O, z) ,~ pllz ( d- l)~exp(Boz a - i )  (5.8) 

as z--> oo, wherepl k is a constant. At the critical point itself, (5.7) then gives 

~ll.~(L• ~ ilk(0, r~; L • 1 7 7  = A 1/(d-1) (5.9) 

which, of course, also follows directly from the finite-size scaling principle. 
However, if hyperscaling fails, as it does for d > d > =  4, the general 
relation (3.4) for 411 is inconsistent with the scaling ansatz (5.7) which must, 
thus, be restricted to d < 4. This conclusion is, indeed, confirmed by 
Br6zin's calculations (16) for the multicomponent limit n--> oo. (Note that for 
finite systems, especially with nonperiodic boundary conditions, this limit 
must be distinguished from the standard spherical model. (1.37)) 
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One may also define an overall size-dependent correlation length, (J6) 
say, ~v(H, T; Lj), in the block limit via the general scaling relation 

~v/a = (k ,  T x / a  a),/v (5.10) 

where X =-- X( H, T; Lj) is the finite-size susceptibility. The thermodynamic 
scaling relation (5.1) then leads to the analog of (5.7), namely, 

G (  H, T, Lj) ~ [tl-"Zv( h /ltla, tolt[~; lj ) (5.11) 

and hence, formally, as y = h/ltP and z = L0l tl~ --> 0, to 

 v,c( L 9 =- re; Lj)-- Lo = V (5.12) 

which parallels (5.9). [If one defines ~v via (fc)-1/a, which is dimensionally 
appropriate, one would obtain (5.11) and, thence, (5.12) only when the 
hyperscaling relation 2 - a = dp holds.] 

Now BrOzin concluded (16) by direct calculation for n--> oo that both 
(5.9) and (5.12) fail for d > 4, the length exponents no longer being unity 
but, rather, depending on d. Since mean field theory holds for the bulk 
system when d > d>, one might hope to obtain the correct results by 
appropriate scaling arguments without the need for explicit calculation. To 
that end, we appeal to our observation that in the first-order cylinder limit 
(LII--> oo) the finite dimensions enter principally through the fluctuation 
energy necessary to create an interface across the system and hence 
through the dimensionless combination 

A Z ( T )  
~ Bot~-' l t[  ~ = Bo(tj_ltl3/e(a-')) a- '  (5.13) 

Yz - k s T 

in which, for d > 4, we have used the mean-field result /~ = 3/2. This 
suggests that for d > 4, where u = 1/2, and ~ = 3/2, the scaling ansatz 
(5.7) should be replaced by 

~rl(a, T; t •  ~ It]-l/2Zrj(h/lt]3/2, L• 3/2(a- O) (5.14) 

At criticality this yields 

~ l l , c (L •177  1/3 (5.15) 

providing the scaling function is well behaved. This surmise is, in fact, 
confirmed precisely by BrOzin's n ~ oo calculations! (16) [On the borderline 
d = 4 Br6zin obtains ~lj,c~L•177 

The parallel argument for the block limit suggests that only the bulk 
combination 

Yv = mohV scaling as t/~+aLoa= (Lot2/a) a (5.16) 
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with fl + 2x = 2 for d > 4, should be important so that for d > 4, one 
should replace (5.1 l) by 

T; Lj)  ItL-'/2zv(h/LtL 3/2, Loltl2/d; (5.17) 

where the/ j  are fixed. At criticality this leads to 

~v,c (Lj) ~ a (Lo/a)a/4  V l/4 (5.18) 

which also agrees precisely with Brdzin's result for n -~ ~ .  
From these considerations we learn that correlation lengths all scale in 

the usual way with Itl - ~  but that the overall dimensions of a system enter, 
in the block limit, through the total bulk ordering free energy ratio 
Yv  = F v / k 8  T and, in the cylinder limit, through the interracial free energy 
ratio y~ = F ~ / k s T .  Below the borderline d> = 4 hyperscaling prevails and 
all lengths and distances, including the correlation lengths ~ ,  ill, etc. scale 
in the same way with t-~;  above d = 4, however, the dimensions Lj scale 
with new powers of t. 

It  is instructive to place these results within a renormalization group 
context (38'39) in which all lengths and distances should renormalize with the 
spatial rescaling factor b as 

f~(h, t, u; R ) ~ b-%(bX~h, ha, t, bX"u; R / b )  (5.19) 

Here R denotes collectively the various lengths and distances and we have 
included the parameter  u which derives from the strength of the fourth- 
order term in the Landau-Ginzburg-Wi lson  effective Hamiltonian 

 [sl/k.r= f ddx[ hos +  roS + u0, 4] (5.20) 

with ro~ t .  Further we have chosen to renormalize in the standard way 
which keeps the coefficient of (Vs) 2 constant. 

For d < 4 one anticipates a nontrivial fixed point (38'39) and u in (5.19) 
represents the deviation from the fixed point value, u* > 0, the correspond- 
ing eigenvalue, X, being negative. The choice b = It[-l/x,, as t ~ 0, leads to 
the standard scaling form where f~ scales as I tl e/x', h scales as ]t[ ~,/x', and R 
scales as Itl -l/x' .  If we introduce the correction-to-scaling exponent 0 = 
-X~/X t > 0 we see that the field u enters only in the combination u[tl ~ 
which vanishes as t---)0, so that u is an  irrelevant variable. One thus obtains 
formally the standard exponent identifications, 2 - a  = dv = d/X~ and 
2x = Xh/X t, which entail hyperscaling and the scaling of all lengths as I tt - ~  
The main tacit assumption is that u is a harmless irrelevant variable which 
may be set equal to zero (corresponding to u 0 at the fixed point value u*) 
without resulting in any singular or anomalous behavior. 

When the dimensionality exceeds d> = 4 the critical behavior is con- 
trolled b y  the Gaussian fixed point (38'391 and one has the renormalization 
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group eigenvalues 

X h = � 8 9  ?~t=2, and ~ = 4 - d  (5.21) 

The last of these is still negative so that u is again an irrelevant variable. 
However, one now has u* = 0 so that coefficient u ~ u 0 cannot be allowed 
to vanish for obvious reasons of stability (at and below criticality). If one 
modifies the renormalization group transformation so that the spin is 
rescaled (with b) so as to keep u fixed at u o one finds that the coefficient of 
the (7s)  2 term now rescales rapidly to + oo as b grows. This justifies the 
classical saddle point approximation, equivalent to mean field theory, 
which, for a homogeneous bulk system, yields 

fe ~ r n m  { - hos + �89 s2 + us 4) (5.22) 

Rescaling by putting s = Y/u  1/2 shows that u enters the free energy in the 
form 

f~(h, t, u) = u - ~ (hu  1/2, t) (5.23) 

and, thus the magnetization, m, has a prefactor u-1/2. The divergence of f 
and m as u ~ 0 confirms the dangerous character (36) of the variable u. One 
may again use the general renormalization group relation (5.19) with the 
choice b = Itl-~/~= [tl -~/2 but must recognize that fc and h will entail 
factors of u as in (5.23). One thus anticipates 

[tld/2 Ih(u[t[~ ,ultlO;RltlV2 
fc "~ u - ~  Wo ]tl(d+2)/4 (5.24) 

t_ 

where the correction-to-scaling exponent is now 0 = � 8 9  4 ) >  0. If u is 

fixed at its initial physical value, u0, it is readily checked that (5.24) 
represents the standard, classical scaling prediction with a -  0, A = 3 / 2  
and t, = 1/2. From this one likewise finds the bulk, zero-field behavior, 

m o ~ g o l t l ' / 2 / u  '/2 and X = C o / I t l  ( t~O)  (5.25) 

where all the u dependence has been displayed; however, for finite systems 
the variable u may still enter in combination with the various dimensions, 
as we now indicate. 

The bulk or block ratio can be written 

ItI2 L d (t~ -- Woo (toIti2/d)d (5.26) 
Yv = fc V ~  Woo---~- o = Woo (ultlo) u 

where Woo = W0(0, 0) and the dangerous irrelevant scaling combination 
ult[ ~ has been explicitly isolated. This likewise exhibits length scaling as 
It[ -~ but shows that L o scales with the "anomalous"  power It] -2/a when 
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u --= u 0 is fixed, as proposed in (5.16). By the same token u[tl ~ must now 
enter (5.11) and (5.24) in a singular fashion i.e., as a divisor of Lolt]L For 
the corresponding interfacial or cylinder ratio note, first, that Z(T)  is quite 
generally, (33'34) proportional to m ~ / X  when t--> 0. Thus we have 

8gltl Itl aoL  (Llltl'/2) 
Yz = k ~  ~ = DO u Co Itl'/2 (ultl 0) 

- Do (Lj_ltl3/2(a-O) a-' (5.27) 
u 

where D o = aoB2/C o and a 0 is a constant. Again we see standard renor- 
realization group scaling with the dangerous irrelevant combination, u]tl ~ 
leading to the anomalous cross-sectional exponent 3 /2 (d  - 1), as advanced 
in (5.14). 

In summary, our discussion of finite size scaling for d > d > =  4 
suggests that the full scaling form, encompassing single-phase behavior and 
the block and cylinder first-order transition limits will entail the three 
scaled variables 

Ljltl Lfft2=---Vt 2, and Laz-'ltj3/Z=--Altl3/2 (5.28) 

Thus all, for example, should enter as arguments in (5.7), (5.11), (5.14), 
(5.17), and (5.24) for a complete asymptotic description. By contrast, when 
d < 4 all limits are covered by the single combination Lj[ t[ ". 

6. PHENOMENOLOGICAL RENORMALIZATION USING 
SINGLE-PHASE FUNCTIONS 

The phenomenological renormalization technique is a numerical 
method for studying hulk criticality which has been applied successfully to 
several two-dimensional problems. (See Ref. 4 for a recent review.) Various 
versions of the method have been used since the approach was originally 
introduced by Nightingale. (4~ For simplicity we consider here only d = 2 
and the L • m geometry and recall one of the most frequently used 
techniques. Thus finite-size scaling for, say, the zero-field susceptibility 
implies that the relation 

ln[XL(To)/XL,(To)] ln(L/U)  
ln [ xL,,( To ) / XL,( To ) ] ~ ln( L" / L') (6.1) 

is valid asymptotically as L, L' and L" ~ ~ when T o = T C. Conversely, the 
solution, To(L, L', L"), of this relation regarded as an equality approximates 
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the true critical point, T~. Given a reliable estimate for T~ one may likewise 
estimate the exponent ratio 7/I '  from 

"r/~ ----- In [Xc ( Tc )IxL'( T~ ) ] / l n ( L / L ' )  (6.2) 

Similar calculations have been performed using the specific heat and using 
~II(T); in the latter case u may be estimated by linearizing around the 
phenomenological fixed point. (4~ More recently, Hamer (41) has suggested a 
variant using a function which approaches the spontaneous magnetization. 

Now the "single-phase" free energy functions, (l~ f+ (H, T; L), de- 
fined in (3.11) should obey finite-size scaling because they are obtained by 
algebraic manipulation of quantities, namely, fo( H, T; L) and f l( H, T; L ), 
which should also obey scaling. This entails the new assumption that the 
first excited free energy level, fl(H, T; L), obeys finite-size scaling; however, 
this is certainly plausible since fl and fo are branches of the same analytic 
function (27) of H. Notice that the single-phase free energies f+ (H), are not 
even functions of H, unlike f0(H ). Thus the corresponding scaling functions 
for all the field derivatives of f_+ (H) have nonvanishing values at H = 0. 
Therefore the f .  (H)  can be used in phenomenological renormalization 
calculations designed to study odd derivatives of the free energy at the 
first-order boundary when T--> T c - (as well as higher-order even deriva- 
tives). 

To illustrate the potentialities of this observation, we report here 
numerical calculations for the nearest-neighbor square and triangular lat- 
tice Ising models (with isotropic interactions). We use periodic boundary 
conditions and consider the expansion 

m(+t)(Tc, H ) =  - (0f~+L) ) y  = ~ c~kL)H k (6.3) 
c k = 0  

From the scaling ansatz we have, for T ~ Tc - and small H, 

m(+L)(T, H)  ~ D~L-~/~Y+ (D2tL I/~, D3HL ~/~) (6.4) 

where the scaling function Y+ (x, y) should be universal and, hence, 
independent of lattice structure with a proper assignment of the nonuni- 
versal amplitudes, or metrical factors, D i. Then the critical point expansion 
coefficients should vary as 

c(kC) ~ D,D;L(K~X -/3)/" (OkY + /3yk)o/  k! (6.5) 

when L --~ oo, where the subscript 0 denotes evaluation at x = y = 0. With 
this observation in mind we have calculated numerically the approximants 

('rk/p) (L)= ln[c(kL)/C(kL-a)]/ln[r/(L - a)] (6.6) 
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which, as L ~  m, should converge to "~Ju, where 

y ~ = k A - f l = y + ( k -  1)A (6.7) 

so that Y0 = - f l ,  Y1 = ~', V2 = ~' + A = fl + 2~,, etc. 
For planar Ising models we have, ~ 14,42,43) /~ = 1 ,  .y ~__. 1 3, and ~ = 1 and 

the validity of the relations for 3'k with k = 2, 3 . . . .  is well established in 
series extrapolation studies. ~44-46) As a test of the approach, therefore, we 
list in Table I data for (3,k/~,) ~L) for L/a = 8, 9 and 10 and several values 
of k, for the square and the triangular lattices. The calculations yielding 
these data are standard and will not be discussed here. ~4'11) The expansion 
coefficients c~ L~ are obtained by numerical differentiation of f§ (H, Tc;L ) 
which, as a result of roundoff errors, restricts k to 8 for the triangular lattice 
and 6 for the square lattice. The values of ( 'fk/p) ~L) have been truncated to 
a sufficient number of places to display the nature of the convergence to 
yk/~, and are otherwise accurate to the order displayed or higher. (Only in 
the last few entries for L = 10a do roundoff errors manifest themselves.) 

Frequently such phenomenological renormalization data for critical 
exponents are fitted well by the form I(yk/~) ~L~ - y k / u l  cc L-Pk with an 
effective power law convergence exponent Pk of magnitude (4'47~ around 2. 
Here, however, an analysis of (-/k/u) ~L~ for L/a = 6,7 . . . . .  10 does not 
reveal any regular pattern of convergence: indeed the k = 0 sequence, 
(fl/~,)~L), for the triangular lattice is not even monotonic! [Note that the 
restriction to L/a < 10 is the price paid for studying high-order derivatives 
so that f+  (H)  must be computed to high accuracy; when only low-order 
derivatives are of interest it is feasible ~4) to go up to L/a ~ 16.] Extrapola- 
tion of exponent data using special methods ~9'48) to accelerate convergence 
may in some cases ~4) improve agreement with conjectured or exact values 
(if known) by an order of magnitude. However, we have not attempted to 
perform any such extrapolations because the data here are clearly not in a 
regime of asymptotic convergence. ~47~ Instead, let us discuss further those 
features which may be of interest in applications to other models, 

First, note that the accuracy of critical exponents estimates for the 
higher-order derivatives is no worse (perhaps even somewhat better) than 
for the second derivative. This is not necessarily surprising: the higher- 
order derivatives of the free energy are more difficult to calculate accu- 
rately but the rate of their convergence to the L ~  ~ limit, which is 
determined by corrections to the leading finite-size scaling behavior, should 
not be qualitatively different. However, the values of ( f l / u )  ~L~ are relatively 
closer to fl/~, than are the other exponents estimates. (See also Hamer. <40) 
There is also a striking difference in the accuracy of the estimates found for 
the two different lattices, which is probably related to the fact that the 
triangular lattice is more closely packed. 
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We may also use our data to estimate the scaling function Y+ (x, y) in 
(6.4). There is some arbitrariness in fixing the metrical factors D i but a 
convenient approach (49) is to specify them by requiring 

Y+ (x, y )  = 1 + x + y + O(xy ,  xZ, y 2) (6.8) 

Then the expansion coefficients, Yk, in 

Y+ (0, y )  = 1 + y + Y 2 9  + Y3Y 3 + " " " (6.9) 

should be universal and are approximated by 

C(o L) ~ (6.10) 

Our numerical results for both the square and triangular lattices are 
summarized by 

Y2 = -8 .35  + 0.30, Y3 = 104 + 7 

Ya = - (1 .53  + 0.16) • 103, Ys = (2.35 + 0.35) x 104, (6.11) 

Y6 = - ( 3 . 0  "q- 0.7) • 105 

The coefficients alternate in sign regularly to this order but some prelimi- 
nary calculations suggest that this does not continue in higher orders. 

As regards verifying the expected universality of Y+ (0, y), the coeffi- 
cients Yk do not provide an optimal test. The problem is that parameters 
calculated from the second free-energy derivative data (k = 1) seem, as 
mentioned, to converge more slowly than for other derivatives. Owing to 
the factor (c~L)) ~ in (6.10), the associated uncertainties are amplified in the 
estimation of the Yk. As an alternative test of universality it is better to 
study the ratios 

R~I~) C(L)C(L) /(s ]2 (6.12) 
"~- k k - 2 / k  k - l )  

which involve only low powers of the c) c), thus avoiding error accumula- 
tion. These ratios serve to approximate the universal scaling function 
coefficient ratios 

R k = Y k Y k _ 2 / ( Y k _ l )  2, k = 2,3 . . . .  with Y0 = Y, = 1 (6.13) 

In Table II we list several R~ L) for L / a  = 9 and 10. It appears again that 
the R~/~) for L / a  = 6 , 7 , . . . ,  10 do not yet exhibit any simple pattern of 
convergence although the triangular lattice values appear to be more 
rapidly convergent. The values for L = 10a for the two lattices agree to 
within 4% for k = 2 and 6 but to better than 1% for k = 3, 4, and 5: this 
represents a gratifying confirmation of the anticipated universality. 
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Table II. The Ratios Rk (L) for the Triangular and Square Islng Lattices a 

Triangular Square 
i 

k L=9a  L= 10a L=9a  L=10a 

411 

2 - 4.20 - 4.17 - 4.39 - 4.33 
3 0.988 0.991 0.979 0.983 
4 0.893823 0.893825 0.898477 0.897653 
5 0.82861 0.82868 0.83817 0.83647 
6 0.6922 0.6925 0.7211 0.7159 

The values have been rounded to the last place displayed. 

As a final comment on numerical methods using the cylinder geome- 
try, note that the position of a first-order phase boundary might be 
located (8'9) by searching for points at which the susceptibility (or the 
specific heat) diverges exponentially with the cross-sectional area A 
= La, -1. Similarly, one could examine the spectral gap 1/~II(H,T;L ) 
= A (fl  - f 0 )  as a function of H. By the analysis of Section 3 this has the 
scaling form 

1/~I~(H, T; L• ~ (2Amoh)2+ 1/~/~(0 , T; L• (6.14) 

for small h = H / k  8 T. If one uses the standard phenomenological rescaling 
approach (following, e.g., Rikvold et al. (5~ and solves the relation 

~II( H, r; L • ) /  L • = ill(H, r ;  L'~ ) /  L~ (6.15) 

for H one then finds that the phase boundary is given correctly up to errors 
of order 1/~ll(L• and 1/~H(L~), which are exponentially small in L•  and 
L~ .  (At a continuous transition one expects errors decaying asymptoti- 
cally (47) as L~_ (l+~ where 0 is the leading singular correction-to-scaling 
exponent.) One can see similarly that the effective renormalization group 
eigenvalue, ?~(L)= 1iv(c), as computed formally by the usual rule, (4) 
diverges like A -- L~ -  1 at a first-order transition. This sort of behavior has, 
indeed, been observed (9) in a study of the first-order thermal transition in 
planar q-state Potts models with q > 4. 

7. C O N C L U D I N G  R E M A R K S  

Finite-size effects at a first-order phase boundary evidently provide a 
rich panorama of phenomena, involving a profound dependence on the 
shape of a system. We have focused mainly on just two geometries, namely, 
block and cylinder, and have studied the crossover between them. How- 
ever, there are other geometries of significant theoretical and experimental 
interest, for example, the slab geometry where finite-size and, especially, 
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surface phenomena have been a subject of intensive but by no means 
exhaustive study. (51~ 

It should also be emphasized that we have considered only boundary 
conditions which do not break the H,=~-  H symmetry. Since the shift in 
the first-order transition due to symmetry breaking surface effects is asymp- 
totically larger than the rounding, (5) further interesting effects may arise 
with more realistic, free or pinned boundary conditions. (28'29) In particular 
the surface contributions themselves become important. (1,28.29) 

Finally, recall that we have discussed only scalar (and discrete) spin 
systems. For systems with vector (and/or continuous) spins less informa- 
tion on the rounding of the first-order transitions is available but important 
qualitative differences arise (13'16) from the different dependence of ill on La 
which reflects the replacement of relatively sharp domain walls by indefi- 
nitely diffuse Bloch walls. 

ACKNOWLEDGMENTS 

We have enjoyed useful discussions with P. Nightingale and wish to 
thank M. Barma, E. Br6zin, D. A. Huse, R. Pandit, and S. Trugman for 
instructive interactions. The financial support of the Rothschild Fellowship 
Foundation (for V.P.) is appreciated. The researches reported have also 
received support from the National Science Foundation (under Grant No. 
DMR-81-17011) and, in part, through the Materials Science Center at 
Cornell University. 

APPENDIX A: SPECTRAL GAP FOR THE SQUARE LATTICE 
ISING MODEL 

We outline the calculation of the asymptotic form of the spectral gap, 
a/g;ll(T), for the square lattice Ising model with couplings J l  ~ Jll along the 
cylinder axis and J2 between spins in the same layer. In terms of the 
variables K i = J i / k B T  and K* related by 

tanhK* = exp(-2Ki),  i = 1,2 (AI) 

one has (14~ K I = K ~  at T =  T C and K I>K~'  for T <  To. The surface 
tension for an interface normal to the axis is given by (14,15) 

=- a o ( T )  = a Z ( T ) / k B T  = 2(K, - K~') 

while the spectral gap for a lattice of width M = L •  sites is (14) 

(A2) 

a l n A 0  1%11,2 +1) (2 I1 
'~lt a ,  2 ~=o el,---M--- - v  - ~  
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where for T < T c the function y(x) is analytic on the real axis, with period 
2, being given by 

u = cosh - ' ( ch2K~ch2K 2 - sh2K~sh2Kzcos~rx ) > 0 (A4) 

in which we have used the convenient abbreviations 

chz ~ c o s h z  and shz = s i n h z  (A.5) 

Then if G(T) is the rth Fourier coefficient of y(x; T) one has 

a//~ll(T, L• = - M ~ c(2j+ 1)M (T)  (A6) 
j~0 

Because y(x) is analytic on the real axis the Fourier coefficients decrease 
exponentially with r and thus we have 

- i c M  = - M   (x)cos(M x) & (A7) 

where the corrections are of relative order c3M/CMWhich is of magnitude 
e x p ( - 2 o L •  as may be seen from the explicit result below. 

After an integration by parts, some algebra, and a shift of the contour 
of integration into the complex plane one obtains 

a/~pl ~ 7r-l(e~IM_, - e-~IM+,)e -oM (AS) 

up to exponential corrections, where 

IM = (4K-~ e -  M, d~" 
ao [ch(~ +r) -ch~] l /2[chZ(Kt  + K ~ ) - c h ( ~  +.Q] t/2 (A9) 

When M = L •  is fixed, the limiting behavior of this integral as T--~0 is 
obtained when e -M~ varies slowly over [0,4K~'], that is, for K~' << a l L •  
One then finds that I M approaches ~r/sh 2K 1, which leads to 

~H(T, L• ~ �89 2K'L~/a (A10) 

for T---~0 with L• fixed. 
By contrast, the behavior for large L• at fixed T in (0, T~) is obtained 

when e -M" varies rapidly or L •  >> 1/K~. In this limit we find 

I M ,~ [ ~ sh 2K]* sh 2K2/2M sh ~] 1/2 ( a l  1) 

which finally leads to 

- O 1 

(A12) 
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which is valid as L •  oo at fixed nonzero T < T C. The crossover 
between the two limiting forms (A10) and (A12) occurs for L•  of 
order unity: see the dotted curve in Fig. 3 which thus corresponds to 
L •  ~ exp(2J2/k B T). The exponential corrections in (A7) lead to cross- 
over to critical behavior as A Z ( T ) / k e  T becomes small where, in this case, 
d = 2 and so A = L• : see the dashed curve in Fig. 3. Via hyperscaling (35) 
this condition is equivalent to L i / ( ~ ( T )  of order unity as implied by the 
scaling criterion (3.15). To discuss the behavior of ~II(T,L• in the critical 
region, marked (iii) in Fig. 3, a more elaborate analysis is required which is 
not considered here. 

APPENDIX B: RENORMALIZATION DOWN TO ONE DIMENSION 

Bl6te, Nightingale, and Cardy (BNC) (9'13) have discussed the effects of 
finite-size on the first-order transition with the aid of a low-temperature 
renormalization group rescaling approach. Here we present a brief critique 
of their arguments which demonstrates why they obtain results which, we 
believe, are not fully correct. 

Let us first reformulate the BNC technique in a form suitable for 
comparing with our analysis in Sections 2-4. The basic idea of BNC is to 
use for finite-size systems the accepted bulk renormalization group recur- 
sion relations, as linearized about the T, H = 0 discontinuity fixed point, 
namely,(6,52) 

h'= bah and T '= bl-aT, so H ' =  bH (B1) 

where b is the standard spatial rescaling factor. For an Lll • L~-1 geometry 
with LII > L•  and periodic boundary conditions, these bulk relations are 
then supplemented with 

LII = L i b  and L' l = L i / b  (B2) 

and the usual bulk flow equation for the free energy is extended by 
postulating 

L ( H ,  T; L , ,  L•  ~ b -  7s (/-/', r';/~i~' L'~) (B3) 

This framework is, of course, consistent with the standard asymptotic 
finite-size scaling hypothesis (1-3'5) and should thus be valid in the vicinity 
of the bulk first-order transition for block geometry. However, (B3) ne- 
glects, in particular, corrections due to nonlinearities of the renormalization 
group away from the fixed point (which can, at least in leading orders, be 
embodied in nonlinear scaling fields) as well as singular corrections to 
scaling. Nevertheless BNC assume that one may validly neglect all these 
corrections even as L i is renormalized down to L' l = a, which corresponds 
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to a one-dimensional chain. Thus they choose b = L •  and, using (B3), 
assert 

f" ( H' T ; LII ' L • ) ~"-" . -L~• . a . ' L • j (B4) 

where, it is argued, the right-hand side may be evaluated in terms of the 
free energy, f , (H' ,  T'; L'), of a one-dimensional Ising model of length L'. 

Now the two transfer matrix eigenvalues for a simple Ising chain with 
h' = H' a a / k s T  and K'  = J / k s T '  are 

= eK'[cosh/7 ' + (sinh2/T ' + e-4K') 1/2] A0,AI (Bs) 

In leading order for small T' and H '  (effective control over higher orders 
having, in any case, been lost) the singular part of the free energy is thus 
given by 

1 ln2cosh[(L,/a)(•,2 + 
U 

On appealing to (B4) with L '=- L~ = Llla/L • 
which may be written as 

e-4K')l/21 ( B 6 )  

etc. one obtains a result 

2 7 1/2 

1 tl f s (H ,T ;L I I ,L •  - -~ln2cosh ~B T + ~ e  -s~ (B7) 

where the T = 0 surface tension enters, correctly, through the identification 

6o ------ 2~;/~ ~- I / a  a - '  = ~( r = 0)A / k s r (B8) 

in which the last part of this equation follows as in Appendix A. 
Comparison with our results, as embodied in (3.14) or (3.19), shows 

that there is agreement only if one makes the correct correspondence 
m0(T = 0) = I and further accepts the identification 

ill ( T, L• ~ �89 L • exp (ZA/ k  s T) (B9) 

for T o O .  However, the exact evaluation of ill for the d = 2 Ising model 
(Appendix A) shows that the BNC result is too large by a factor (LL/a) .  
[See (A10), which gives the result for T---> 0; when L• ~ m at fixed T > 0 
the error is of order (L•  V2 but comparison in this limit is not really 
justifiable.] More generally, by (4.8) there are no grounds for accepting (B9) 
for other dimensionalities either! 

The basic flaw in the BNC argument is that one is not justified in 
using the linearized flow equation (B3) when LII//~II >> 1. This may be 
understood heuristically by noting that the nature of the renormalization 
group transformation is to smear out microscopic details..However, in the 
cylinder geometry the most probable configurations entail homogeneous 
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domains of mean  length ~11 separated by roughly LII//~II distinct interfaces: 
but  an interface at low temperatures is a microscopic structure, on the scale 
~ = O(a). Consequently the flow equation (B3), linearized about  the bulk 
discontinuity fixed point, misses some of the needed information.  

To demonstrate  the deficiency of the B N C  approach  more concretely, 
consider d = 2 and suppose one renormalizes only down to L~_ = 2a which 
describes an Lil • 2a " ladder"  (or double-chain) with periodic boundary  
conditions. This system can again be solved exactly, and in place of (B6) 
one finds, for small T '  and H ' ,  

f 2 a ( H ' , T ' ; L ' ) ~ -  2 - @ l n 2 c o s h [ ( L ' / a ) ( 4 h 4  + e-SK') 1/2] (B10) 

As a matter  of fact this expression can be derived f rom (B6) merely by 
recognizing the scaling properties of an Ising strip for low field and 
temperature! On  using (B3) as before but  with b = L L/2a one finds, 
instead of (B7) the different result 

The necessary identification of ~ll again differs f rom the correct result for 
d = 2 by a power of L •  but  now a further factor  of 2 is also present! One 
may  rationalize the different answers by noting that, in effect, the B N C  
approach  fails to differentiate factors of 2 which are true numerical  
constants f rom those equal to L'a//a which rescale nontrivially. Thus wrong 
factors of L •  and wrong numerical  factors are not  surprising. In any event, 
an adequate  treatment along the B N C  lines would have to go beyond  the 
simple linearized renormalization group relation (B3). 
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